
[Mathew, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1627-1626]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
Edge Based Antialiasing: Quality without Compromise

Bineta Tresa Mathew

Department of Computer Science and Engineering, Birla Institute of Technology, Offshore Campus,
RAK, UAE

Abstract

 This paper discusses a new, more efficient technique for handling antialiasing of images. This technique is
capable of overcoming the various problems experienced with current real-time antialiasing techniques. The various
features associated with the new technique will be discussed in detail as well as how the new technique compares
with existing techniques in real-time environments through tests in order to come to a conclusion regarding its
performance capability. The purpose of this paper is to shed light on the advantages of this technique and prove that
this technique is an efficient alternative to existing antialiasing techniques.

Keywords: AA, SSAA, MSAA, MLAA, FXAA.

Introduction
 Antialiasing (AA) is the process whereby the
jagged edges of a graphic can be smoothed to give a
more pleasing and realistic appearance. The process in an
intense processing technique and therefore faces many
problems such as incorrect and dirty artifact production,
flickering animations etc. which in turn require more
processing power to fix. Many fixes such as increasing
the sampling rates for example can help with clear image
production but they are too costly to implement for real-
time applications. Other fixes include development of
completely new algorithms and complex shaders.
However, AA has been a barrier when rendering images
in real-time applications [1].

In its infant stages, the two most common go-to
solutions were the supersample antialising (SSAA) and
the multisample antialising (MSAA). These were heavily
used in real-time applications especially video games.
However, these techniques are not perfect. MSAA does
not scale well when increasing the number of samples
and is not completely compatible with modern
environment rendering paradigms [2][3]. It exemplify
this problem with numbers, MSAA 8x takes an average
of 5.4 ms in modern video games with state of the art
rendering engines (increasing to 7.7 ms on memory
bandwidth intensive games) on a NVIDIA GeForce GTX
470. Memory consumption in this mode can be as high
as 126MB and 316 MB, for forward and deferred
rendering engines respectively, taking 12% and 30% of
the rendering time of a mainstream GPU equipped with
1GB of memory. This problem is aggravated when HDR
rendering is used, as the memory consumption and
bandwidth increases even further.

Many alternatives approaches were considered

but all of them had their own set of problems. The most
prominent ones are:

• Most approaches do not deal with diagonal
patterns, as they can recognize vertical and
horizontal patterns.

• The aliasing effects on some shapes such as
corners in text are clearly visible.

• Edge detection algorithms detect edges based on
the difference in pixels without considering the
surroundings of that edge.

• Subpixel features and Subpixel motions are not
implemented/handled properly.
To deal with these issues the Edge Based

Antialiasing (EBAA) was developed. This approach
tackles each of the above mentioned problems separately,
offering simple, modular solutions. First, for the edge
detection algorithms, the number and type of edge
patterns is increased. Second, multi/supersampling and
temporal reprojection is combined with another
technique called MLAA (which will be discussed in the
coming section), so that the real subpixel features and
subpixel motion can be handled effectively. Finally, for
more accurate pattern classification, the edge detection
algorithm is enhanced with better distance searches that
include low contrast pixels as well.

The Root OF EBAA
 The Morphological Antialiasing (MLAA) is a
technique that estimates the pixel coverage of the
original geometry [3]. To accurately rasterize an

[Mathew, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1627-1626]

antialiased triangle, the coverage area for each pixel
inside the triangle must be calculated to blend it properly
with the background. MLAA takes a non antialiased
image and re-vectorizes the individual objects in the
image pixel by pixel and then arranges the area with its
neighbours. Figure 1 describes the process.

Figure 1: MLAA first finds edges by looking for color
discontinuities (green lines), and classifies them according to
a series of pre-defined pattern shapes, which are then
virtually re-vectorized (blue line), allowing to calculate the
coverage areas a for the involved pixels. These areas are then
used to blend with a neighbor. For example, the pixel Copp
fills the area a of the pixel Cold: cnew = (1-a) . cold +a . copp.

Several MLAA antialising implementations
appeared after the technique was published such as
Jimenez’s MLAA [3]. The algorithm has three passes:
edge detection, pattern detection plus calculation of
coverage areas, and final blending. Pattern detection is
performed by locating the ends of an edge, and
performing hardware bilinear filtering on them. Once the
ends are reached, the algorithm looks at the crossing
edges. These crossing edges are the perpendicular edges
with respect to the direction of a search and are
represented as the vertical green lines in Figure 1. With
length and crossing edges information, the coverage area
is retrieved, and used for the final blending. This MLAA
implementation was chosen as the starting point for the
EBAA algorithm which will be explained in detail in the
coming sections.

The Various Features of EBAA

This section will detail the various features of
EBAA and their implementation idea. EBAA is built on
the MLAA implementation by Jimenez. First, the edge
detection is improved by using general color information
along with local contrast adaptation for recognizing and
handling more edges. Then, as mentioned earlier, the
number of patterns handled is extended and enhanced for
a more reliable edge classification. Finally, MLAA is
combined with multi/supersampling and temporal
reprojection. Although, EBAA seems similar to MLAA,
it performs much better and the images produced are
much cleaner in terms of quality.
Edge Detection:

Edge detection is accomplished through the use
of different information: RGB color, luma, depth, surface
normal, object ID, or combinations of them. This means
various methods will detect various types of edges. All

the types can be combined and used but this puts an
unnecessary toll on the performance. For EBAA, Luma
was chosen for four reasons: first, MLAA processes
edges that occur from color-based (either luma or RGB)
discontinuities; otherwise artifacts may appear [2].
Second, unlike depths and normals, color information is
always available for the algorithm. Third, it is compatible
with shading aliasing. And fourth, it is much faster than
RGB color while maintaining similar performance and
similar results. For efficiency purposes, EBAA searches
for edges at the top and left boundaries of each pixel, and
uses other information from the neighbours.
Local Contrast Adaptation: To reduce artificial edges
(caused due to local numerical differences) that reduce
image quality, an adaptive threshold is performed which:
a) prevent line searches from stopping at non-
perceptually-visible crossing edges; and b) choose the
dominant (higher contrast) edge when there are two
parallel edges on a pixel.
Pattern Handling:

The EBAA’s pattern detection can preserve sharp
geometric features like corners, deal with diagonals and
perform accurate distance searches.
Sharp Geometric Features: The re-vectorization of the
image elements of MLAA tends to round corners on the
image. Here the crossing edges used for the pattern
detection are just one pixel long, and this makes it is not
possible to distinguish a jagged edge from the actual
corner of an object, which may therefore be wrongly
processed.

To avoid this, two-pixel-long crossing edges are
used instead; this helps in detecting the actual corners
and ensure that there is no unnecessary processing of
wrong features of an object. The degree of processing
applied is defined by a rounding factor r, which scales
the original coverage areas obtained by one-pixel-long
crossing edges. The recommended range for r is [0:0-
1:0].
Diagonal Patterns: The filter-based techniques available
now search for patterns made of horizontal and vertical
edge patterns. This translates into badly aliased results
(in space and time) for diagonal lines (see Figure 2).

Figure 2: MLAA (left) and EBAA (center) re-vectorizations
(blue lines) of near-45o diagonals. Thanks to the new
handling of diagonal patterns (green lines), EBAA
reconstructs the edge accurately. Right: The new approach
requires just the same information as for the orthogonal case:
distances dl and dr; and crossing edges e1 and e2 (right).

[Mathew, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1627-1626]

 EBAA introduces a diagonal pattern detection
that helps detecting the diagonal patterns. Here, a
diagonal re-vectorization (Figure 2, center) is used,
instead of the original orthogonal re-vectorizations that
handle only horizontal and vertical edges (Figure 2, left).
The mechanism uses a precomputed texture that takes the
diagonal pattern, defined by the distances to both ends of
the diagonal line and the diagonal crossing edges
information (Figure 2, right); and outputs the accurate
coverage areas.
 Calculating diagonal coverage areas consists of
the following steps, for both the top-left to bottom-right
and the bottom-left to top-right diagonal cases:

• First, search for the diagonal distances dl and dr
to the left and to right end of the diagonal lines.

• Then fetch the crossing edges e1 and e2.
• And finally use this input information (dl , dr,

e1, e2), defining the specific diagonal pattern, to
access the precomputed area texture, yielding
the areas at and ab.

Accurate distances search: Obtaining accurate edge
distances is the most important aspect of pattern
classification.
 Jimenez’s MLAA makes extensive use of
hardware interpolation (bilinear filtering) to identify
patterns. Hardware bilinear filtering can be used as a way
of fetching and encoding up to four different values with
a single memory access (otherwise it would be necessary
to perform one memory access per value to fetch). This
is exploited to fetch two edges at once, allowing to
partially reduce bandwidth usage. However, it does not
check crossing edges during the search, which may lead
to inaccuracies in pattern detection [3].
 Unfortunately, fetching the crossing edges using
the MLAA scheme requires two linearly filtered accesses
per iteration, doubling the bandwidth usage. EBAA uses
an approach similar to the MLAA approach but slightly
alters it by generalizing the approach for two
dimensional accesses which fetches four different values
with a single memory access.
 Jimenez’s MLAA uses a linear interpolation of
two binary values producing a single floating point
value:

where b1 and b2 are two binary values, and x is the
interpolation value. If x ≠ 0.5, this produces a set of four
unique values: {0, 1 – x, x, 1}. So, it is possible to find a
decoding function f −1 that recovers the original b1 and
b2 binary values. Instead EBAA performs bilinear
interpolation of four binary values as follows:

where y is the interpolation value in the second
dimension. By choosing a value of y = 0.5x, it is possible
to create a binary base that allows to encode a bilinear
interpolation between four binary values into a single
one, and still be able to recover the sixteen possible
original values. EBAA uses this method to fetch the four
b1, b2, b3 and b4 binary edge values.

Subpixel Rendering:

The MLAA algorithm uses a single sample per
pixel. This leads to subsampling, thus making sure that
the real subpixel features cannot be implemented (see
Figure 3, no AA and MLAA). Having lower number of
sample may reduce the bandwidth required but the more
samples per pixel the algorithm has to process, the better
the reconstruction of the antialiased image will be. The
easiest method would be incorporating MSAA into
MLAA. This method involves applying MSAA over
each subsample group of MLAA separately and then
averaging them together. However, this approach leads
to blurry results (see Figure 3, MSAA 4x with MLAA).
This is due to MLAA and MSAA making different
assumptions about the coverage of the samples, so they
cannot converge even when the samples per pixel count
is increased.

Figure 3: A difficult case for no AA, MLAA [3] and EBAA
1x: a white grid over a black background at mid-distance
(top), prevents the reconstruction of accurate coverage; at a
longer distance (bottom, zoomed in), the continuity of the grid
is broken, preventing its recovery. Using extended patterns to
deal with sharp geometric features and correct offsets allows
for more accurate area estimation, making EBAA S2x and 4x
converge to the MSAA 4x reference. Note how the naive
application of MLAA over samples from MSAA 4x improves
the connectivity of the grid, but blurring artifacts appear.

EBAA’s solution here is to calculate the offset
position of each subsample inside the pixel, in order to
calculate their coverage areas accurately. Through this
solution, when the different subsample groups are
blended together, the average color at the center of the
pixel is obtained as expected. Then, the only required
change is to use different precomputed areas textures for
each subsample position. This approach is general
enough to handle additional samples coming from
standard approaches like temporal supersampling and
spatial multisampling, so several configurations are
possible. In particular, the following modes are found to
be the most interesting from a performance/quality
perspective:

• EBAA 1x: includes accurate distance searches,

[Mathew, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1627-1626]

local contrast adaptation, sharp geometric
features and diagonal pattern detection.

• EBAA S2x: includes all EBAA 1x features plus
spatial multisampling.

• EBAA T2x: includes all EBAA 1x features plus
temporal supersampling.

• EBAA 4x: includes all EBAA 1x features plus
spatial and temporal multi/supersampling.

 Figure 3 shows how EBAA 4x performs better to
MSAA 4x. This makes EBAA better than simply
combining MSAA and MLAA.

Temporal Reprojection:
While temporal supersampling helps efficiently render
subpixel features, combining it with naive resolve
approaches like linear blending results in very noticeable
artifacts, commonly referred to as ghosting (see Figure 4,
left). A better solution is to re-project instead the
previous frames’ subsamples into the current frame [3].
However, open regions still suffer from ghosting (see
Figure 4, middle). To minimize this, EBAA weights the
previous subsample by w, which depends on the
difference in velocity with respect to the current
subsample:

where vc and vp are the velocity of current and previous
frames, and K is a constant that determines how much
EBAA attenuates previous frame according to velocity
differences. Then, the final resolve is performed as
follows:

where c is the final resolved color, cc the color in current
frame, and cp the color in the previous frame. Such a
solution robustly handles open regions but at the expense
of no antialiasing on such regions (see Figure 4, right).
However, the other components of EBAA will usually
antialias these regions, effectively eliminating the
problem.

Figure 4: Left: Using a naive resolve results in visible
ghosting. Middle: Reprojection mitigates these artifacts but
does not completely remove them. Right: The addition of
velocity weighting allows to completely remove ghosting.

Results
Figure 5 shows a comparison of EBAA

technique against MSAA, SSAA and MLAA. The
screenshots are all 1080p images that have been captured
from a system running on the AMD RadeonTM HD 7970
clocked at 1000 Mhz and Intel® CoreTM i7 3770 clocked
at 3500Mhz. As mentioned earlier, subpixel modes allow
higher thresholds for edge detection, which lowers
execution times without visible loss of image quality.
The various games used for the test are: Assassin’s
Creed® Brotherhood, Borderlands® 2 and Crysis® 3
respectively.

Figure 5: EBAA 1x can produce results close to SSAA 16x,
with EBAA T2x having a performance on par with the fastest
MLAA implementation [3].The left image of the first row has
MSAA only enabled. The left image of the first row has SSAA
enabled. Finally in the third row, the left image has MLAA
enabled. In all of the rows the right image has EBAA
enabled. The improved edge/pattern detection allows to
antialias difficult cases (first row). Subpixel features handling
allows preserving connectivity and accurately representing
distant objects (second row). The detection of sharp geometric
features allows bettering reconstructing corners and
intersections. Diagonal pattern detection allows accurate
reconstruction of such shapes (third row).

[Mathew, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1627-1626]

As evident from the test results, EBAA not only
solves limitations of just MLAA in particular, but of all
postprocessing antialiasing filters in general. With
respect to memory consumption, the most demanding in-
game configuration requires only 38% of the memory
used by MSAA 8x, resembling the results of SSAA 16x.
Also evident is that EBAA is able to perform better than
MLAA, while delivering superior overall quality, both in
gradients and shading.

Conclusion

Through my personal experience and the
various tests performed, I can conclude that this new
technique tackles all the weak points remaining in filter-
based antialiasing solutions. EBAA is a unique
combination of a filter-based antialiasing technique with
standard multi/supersampling approach and temporal
reprojection. EBAA can be considered as a spiritual
successor to MLAA as it is a combination of improved
MLAA strategies and spatial and temporal
multi/supersampling which accounts for a very robust
solution, combining the different synergies for better
fallbacks. EBAA delivers very accurate gradients,
temporal stability and robustness, while introducing
minimal overhead, making it an obvious choice for low-
end configurations. We believe that through EBAA,
developers can bring high quality antialiasing
performance to mid-range GPUs, and highly recommend
it to anyone who would like to increase their graphical
fidelity without comprising memory bandwidth.

References

[1] J. Andersson, 5 Major Challenges in Interactive
Rendering, ACM SIGGRAPH Courses (2010).

[2] J. Jimenez, D. Gutierrez, J. Yang, A. Reshetov,
P. Demoreuille, T. Berghoff, C. Perthius, H. Yu,
M. Mcguire, T. Lottes, H. Malan, E. Persson, D.
Andreev, T. Sousa, Filtering Approaches For
Real-Time Antialiasing, ACM SIGGRAPH
Courses (2011).

[3] J. Jimenez, B. Masia, J. I. Echevarria, F.
Navarro, D. Gutierrez, Practical Morphological
Anti- Aliasing, GPU Pro 2, AK Peters Ltd.,
(2011).

[4] A. Reshetov, Morphological Antialiasing, High
Performance Graphics (2009)

